
Journal of Computational Physics 200 (2004) 695–717

www.elsevier.com/locate/jcp
A free-surface hydrodynamic model for density-stratified
flow in the weakly to strongly non-hydrostatic regime

Colin Y. Shen *, Thomas E. Evans

Naval Research Laboratory, Code 7230, 4555 Overlook Ave. S.W., Washington, DC 20375, USA

Received 13 January 2004; received in revised form 28 April 2004; accepted 29 April 2004
Available online 10 June 2004
Abstract

A non-hydrostatic density-stratified hydrodynamic model with a free surface has been developed from the vorticity

equations rather than the usual momentum equations. This approach has enabled the model to be obtained in two

different forms, weakly non-hydrostatic and fully non-hydrostatic, with the computationally efficient weakly non-

hydrostatic form applicable to motions having horizontal scales greater than the local water depth. The hydrodynamic

model in both its weakly and fully non-hydrostatic forms is validated numerically using exact nonlinear non-hydrostatic

solutions given by the Dubriel–Jacotin–Long equation for periodic internal gravity waves, internal solitary waves, and

flow over a ridge. The numerical code is developed based on a semi-Lagrangian scheme and higher order finite-

difference spatial differentiation and interpolation. To demonstrate the applicability of the model to coastal ocean

situations, the problem of tidal generation of internal solitary waves at a shelf-break is considered. Simulations carried

out with the model obtain the evolution of solitary wave generation and propagation consistent with past results.

Moreover, the weakly non-hydrostatic simulation is shown to compare favorably with the fully non-hydrostatic sim-

ulation. The capability of the present model to simulate efficiently relatively large scale non-hydrostatic motions sug-

gests that the weakly non-hydrostatic form of the model may be suitable for application in a large-area domain while

the computationally intensive fully non-hydrostatic form of the model may be used in an embedded sub-domain where

higher resolution is needed.

Published by Elsevier Inc.
1. Introduction

The numerical solution of three-dimensional incompressible hydrodynamic equations invariably in-

volves solving a three-dimensional (3D) elliptic equation, which is usually the most time consuming part of

the calculation [1–6]. However, this computational burden can be alleviated significantly if the motion is
weakly non-hydrostatic, defined herein as the horizontal scale of the motion exceeding the local water
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depth. Then it is possible to reduce the dimension of the elliptic equation by one. This computational

advantage has been widely adopted in the study of long irrotational surface gravity waves, and the weakly

non-hydrostatic equations used for such computation have been referred to as the (extended) Boussinesq
equations [7–10]. For rotational density-stratified motion, such as internal gravity waves and shear flows, it

has been shown [11] that the reduction of the elliptic equation’s dimension by one is equally possible when

the rotational motion is weakly non-hydrostatic. The derivation of the more general weakly non-hydro-

static equations, however, requires the free surface hydrodynamic model to be formulated differently, by

obtaining a 3D elliptic equation in terms of the vertical velocity from the vorticity equations instead of the

usual pressure from the momentum equations. This alternative formulation together with the weakly non-

hydrostatic approximation then leads to an elliptic equation of reduced dimension.

For coastal oceanography, it can be advantageous to develop a weakly non-hydrostatic, density-
stratified model, as the relatively shallow water depths on the continental shelf render wave/current motions

(rotational or not) in many situations weakly non-hydrostatic. Such a model can be utilized to significantly

speed up the computation of coastal waves and currents relative to a fully non-hydrostatic model. In this

paper, we will present the numerical free-surface hydrodynamic model developed based on the formulation

of the elliptic equation in terms of the vertical velocity given in [11]. The model will be presented in both its

weakly and fully non-hydrostatic forms. To validate these two forms of the model, the simulated flow fields

will be shown and compared to the exact nonlinear non-hydrostatic solutions of the Dubriel–Jacotin–Long

(DJL) equation [12], which is also often referred to as Long’s equation. The DJL solutions to be compared
to are periodic internal waves, internal solitary waves, and flow over a ridge. Following the validation, the

model will be applied to a coastal internal wave problem, namely, the tidal generation of internal waves at

the shelf-break, to demonstrate the applicability of the weakly non-hydrostatic approximation in the

coastal environment.

The paper is organized as follows. In Section 2, the governing equations and the weakly non-hydrostatic

approximation are summarized. In Section 3, the numerical solution procedure using a semi-Lagrangian

scheme is developed. In Section 4, the solutions of the DJL equation are presented for three cases: periodic

internal gravity waves, internal solitary waves, and stratified flow over a ridge. The weakly and fully non-
hydrostatic simulations of the wave/current motion in each case are presented and compared to the

benchmark DJL solutions. In Section 5, the weakly non-hydrostatic approximation is applied to the

simulation of internal wave generation by tides at the shelf-break. In Section 6, the summary is given.
2. Governing equations

In this section, we recapitulate the fully and weakly non-hydrostatic equations derived in [11]. The
starting point for that derivation has been the horizontal vorticity equations and the free-surface mo-

mentum equation. The horizontal vorticity equations make the non-hydrostatic vertical motion directly

accessible to approximations; specifically, setting the part of the horizontal vorticity components related to

the vertical motion to zero yields the hydrostatic limit, while the weakly non-hydrostatic approximation is

obtained by allowing the same vorticity component to assume a small non-vanishing value. The emphasis

on the vertical motion with the horizontal vorticity formulation here may be contrasted with the vertical

vorticity formulation, widely used in oceanographic as well as meteorological studies, that emphasizes

horizontal currents.

2.1. The fully non-hydrostatic equations

Defining u� ¼ ðu; v;wÞ as the velocity vector in the Cartesian coordinate system x� ¼ ðx; y; zÞ with z
positive upward, the three-dimensional vorticity vector is
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s� ¼ r� � u� ¼ sx; sy ; sz
� �

¼ ow
oy

�
� ov

oz
;
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oz
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ox

;
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ox

� ou
oy

�
; ð1Þ

where r� ¼ ðo=ox; o=oy; o=ozÞ. Denoting the horizontal vector component of vorticity by s ¼ ðsx; syÞ and

the horizontal vector component of velocity by u ¼ ðu; vÞ, the governing equation for the horizontal vor-

ticity vector is obtained by taking the curl of the momentum equation,

Du�

Dt
þ f � u� ¼ �r�P

q0

þ g
q
q0

; ð2Þ

and is

Ds

Dt
¼ ðs� þ fÞ � r�u� g�rq

q0

; ð3Þ

applicable to an incompressible rotating fluid with the Boussinesq approximation for density variation,

where D=Dt ¼ o=ot þ u� � r�, q is the total density, q0 is a constant reference density, f ¼ ð0; 0; f Þ is the

rotational vector for the Coriolis frequency, g ¼ ð0; 0;�gÞ is the gravity, and P is the pressure. (Tempo-
rarily the viscous terms are omitted for clarity.) The density variation is governed by

Dq
Dt

¼ 0: ð4Þ

It is convenient to define s0 ¼ ðsy ;�sxÞ in terms of the s components in (3), and the following vector identity

is written

ou

oz
�rw ¼ s0; ð5Þ

where r ¼ ðo=ox; o=oyÞ is the horizontal gradient operator. u may be eliminated from (5) by applying the
horizontal gradient operator to (5) and making use of the continuity equation

r � uþ ow

oz
¼ 0; ð6Þ

to obtain an elliptic equation for w,

r2wþ o2w
oz2

¼ �r � s0: ð7Þ

This equation can be solved for the vertical velocity w given appropriate boundary conditions (discussed

further in Section 3.5). Once w is determined, (6) can be integrated downward for u given a surface hori-

zontal velocity as the boundary condition. Let ug denote this horizontal velocity at the free surface. The

equation governing ug, in the absence of horizontal atmospheric pressure variation, is

Du

Dt

� �
g

þ f � ug ¼ � Dw
Dt

� �
g

 
þ g

qg

q0

!
rg; ð8Þ

which is (2) evaluated at the free surface with the horizontal pressure gradient at the constant- pressure free

surface evaluated in terms of the horizontal gradient of the free surface height, g. The subscript g denotes

flow variables evaluated at the free surface.



698 C.Y. Shen, T.E. Evans / Journal of Computational Physics 200 (2004) 695–717
The free surface height varies according to

og
ot

¼ �r �
Z g

�h
u dz; ð9Þ

which is the vertically integrated form of the continuity equation (6), with the application of the boundary
conditions at the free surface, z ¼ g,

wg ¼
og
ot

þ ug � rg ð10Þ

and at the rigid bottom, z ¼ �h,

w�h ¼ �u�h � rh: ð11Þ

Eqs. (3)–(9) form a set of non-hydrostatic equations governing wave/current motions in a free-surface,
density-stratified, hydrodynamic system. By using the vorticity equations as the primary governing equa-

tions, the elliptic equation (7) for w appears and must be inverted at each time step of the numerical in-

tegration. This contrasts with the conventional approach of integrating the momentum equation (2) directly

and inverting at each time step an elliptic equation for P. Although the present approach is different, it does

little to change the computational demand, since an elliptic equation still has to be inverted. The main

advantage of the horizontal vorticity formulation is that the non-hydrostatic vertical acceleration implicit

in the horizontal vorticity component (5) is accessible to approximation. For example, the widely used

hydrostatic model equations are readily obtained by setting rw in (5) to zero; in which case, the solution of
the elliptic equation (7) is unnecessary, and (3) is the governing vorticity equation with s ¼ ð�ov=oz; ou=ozÞ,
while the free surface momentum equation is (8) with the term Dw=Dt ¼ 0. When the non-hydrostatic

motion is non-zero but small, i.e., small non-negligible rw, the weakly non-hydrostatic approximation can

be applied to the w terms in (5) and (7) to obtain an elliptic equation of one less dimension, which can be

more efficiently solved than the full 3D elliptic equation (7). This is discussed next.
2.2. The weakly non-hydrostatic equations in the x–z dimension

The degree of the non-hydrostatic influence is typically measured on the basis of the ratio l ¼ h=L, where
L represents a horizontal scale of the wave/current motion and h is the local water depth. With this scaling of

x and z, it can be shown that the horizontal derivative terms in (5) and (7) are smaller than the vertical

derivative terms by l2 for motions having L > h. The smallness of this dimensionless parameter suggests that

in the case of l2 � 1, velocity variables can be expanded as a power series of l2, and the equations of

different orders of accuracy in l2 can be obtained. The zeroth order equations are the hydrostatic equations.

At the next order the weakly non-hydrostatic equations of l2 accuracy are obtained, and still higher-order

accuracy equations can be obtained by retaining higher order l2 terms. The procedure by which the weakly
non-hydrostatic equations are derived has been detailed in [11]. A key step in the derivation is the choice of

an intermediate horizontal velocity variable ~u to represent, in a vertically averaged sense, the horizontal

velocity distribution over the water column. In the subsequent perturbation analysis, a 2D horizontal elliptic

equation is derived for this ~u, and 3D flow is obtained by relating ~u, the solution of the 2D elliptic equation to

the actual velocity vector u. This is a more efficient approach to modeling the weakly non-hydrostatic

motion, without real loss of accuracy, than solving the full 3D elliptic equation (7) exactly. In the following

we list the two-dimensional ðx; zÞ version of the weakly non-hydrostatic equations of l2 accuracy given in

[11], for which we will develop the numerical solution procedure, directly extendable to three dimensions.
With the focus here specifically on internal wave/current motions not the surface gravity waves, the

vertical acceleration term, Dw=Dt, in (8) may be neglected relative to g. The two-dimensional total time
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derivative is now D=Dt ¼ o=ot þ uo=oxþ wo=oz. Let F ðugÞ denote dissipation, yet to be specified. The

governing equation for the surface velocity (8) becomes

Du

Dt

� �
g

þ f � ug ¼ �g
qg

q0

og
ox

þ F ðugÞ: ð12Þ

It should be noted that internal wave/current motions will always generate some surface Dw=Dt. In all

calculations to be presented, the neglected surface Dw=Dt is much less than g. The surface Dw=Dt clearly
cannot be neglected in the dynamics of finite-amplitude surface gravity waves, and the use of (8) in its entirety

for surface gravity wave calculation is the same as that already published in the literature as noted in [11].

The evolution equation for surface height equation is now

og
ot

¼ � o

ox

Z g

�h
u dz ð13Þ

and the time-dependent horizontal vorticity equation is

Ds

Dt
¼ sx

ou

ox
þ ðsz þ f Þ ou

oz
� g�rq

q0

þ F ðsÞ; ð14Þ

where sx ¼ �ov=oz, sz ¼ ov=ox and F ðsÞ denotes the dissipation.
Defining an intermediate velocity variable, ~u, representative of the u distribution over local water depth,

the perturbation analysis of (5) and (7) in terms of small parameter l2ð� 1Þ carried out in [11] shows that a

2D horizontal elliptic equation for ~u accurate to l2 can be obtained. In the present one horizontal dimension,

applicable to the x-component of ~u, the equation is of the following form for a stress-free free surface:

H 2
g

3

 !
o2~u
ox2

þ Hg
oh
ox

� �
o~u
ox

þ Hg

2

o2h
ox2

�
� 1

�
~u ¼ � ug

�
þ �sw

�
þ Hg

2

oh
ox

� �
o

ox
Du�h

�
þ o2h

ox2

� �
Du�h

�
;

ð15Þ
where Hg ¼ hþ g, DuðzÞ ¼

R g
z sy dz

0, Du�h ¼ Duðz ¼ �hÞ and

�sw ¼ 1

Hg

Z g

�h
sw dz with sw ¼ �

Z g

z

o

ox

Z z

�h

Z g

z

osy
ox

dz0 dz00
� �

dz000:

Once ~u is determined from (15), the actual horizontal velocity, u, as a function of depth is obtained from the

following equation derived in [11]:

uðzÞ ¼ ug � DuðzÞ þ sw þ
1

2
ðH 2

g � H 2
z Þ

o2~u
ox2

þ ðHg � HzÞ 2
oh
ox

� �
o~u
ox

"
þ o2h

ox2

� �
~u� oh

ox

� �
o

ox
Du�h �

o2h
ox2

� �
Du�h

#
; ð16Þ

where Hz ¼ hþ z.
The vertical velocity is obtained from the continuity equation (6) by integration

wðzÞ ¼ w�h �
Z z

�h

ou
ox

dz; ð17Þ

where w�h ¼ �u�hðoh=oxÞ, and u�h ¼ uðz ¼ �hÞ.
Eqs. (15)–(17) are the equations for the weakly non-hydrostatic model in place of (5) and (7).
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3. Numerical solution method

There are a number of ways to solve the equations in Section 2 numerically. For the free surface
problem, the constantly changing geometry of the fluid domain due to the moving free surface suggests that

a finite-difference scheme based on tracking moving fluid-particles may be desirable. The semi-Lagrangian

scheme is one such scheme and is used here. This technique for integration of the equations of motion has

been discussed extensively [13,14]. The basic idea of the semi-Lagrangian scheme is to calculate the evolving

flow field with respect to moving fluid particles but to use a new set of particles at each time step; this

procedure requires a spatial interpolation at each time step to re-grid the flow field for the new particles.

The procedure described in the following, known also as the forward trajectory calculation, re-grids the

flow field after each Lagrangian time step. This has been shown in [14] to lend more stability and efficiency
to the semi-Lagrangian scheme than the backward trajectory calculation, i.e., re-griding before the La-

grangian time step.
3.1. The grid system

The positions of the new particles at each time step are defined by a surface conforming grid

nj ¼ 1� 2
g� zj
gþ h

; ð18Þ

so that nj has the fixed range �16 nj 6 1 for �h6 zj 6 g, where the subscript j is the integer index iden-

tifying the discrete gird points along the vertical axis. The starting vertical position of a particle thus varies

with g from one time step to the next and is

zj ¼
1

2
½gðnj þ 1Þ þ hðnj � 1Þ�; ð19Þ

while the particle’s starting horizontal position is simply xi, where the integer index i identifies the discrete

grid points on the horizontal axis. Herein, the physical grid rij ¼ ðxi; zjÞ, which defines the particles’ starting

positions, will be referred to as the ‘fixed’ grid. The particles themselves form a Lagrangian grid,
pij ¼ ðai; cjÞ. For the purpose of the calculation, ai ¼ xi and cj ¼ nj are set at the start of each time step,

t ¼ t0. This grid pij being attached to the moving particles will be referred to hereafter simply as the

‘moving’ grid.
3.2. The Lagrangian time step

To obtain the Lagrangian solution accurate to the order of Dt2, we discretize the governing equations for
horizontal vorticity (14) and the surface momentum equation (12) using the trapezoidal rule, while the
density equation (4) is simply discretized as

qt1
p ¼ qt0

p þ DtF ðqÞ ð20Þ

with t1 ¼ t0 þ Dt. Here a diffusion term F ðqÞ has been added and the subscript p is used to label flow

variables associated with a particle. Although the horizontal vorticity equation (14) can be cast in the

trapezoidal form directly, the implicit terms that appear in the resulting equation are difficult to evaluate.
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To circumvent this problem, a different approach is adopted to achieve the trapezoidal integration. The

somewhat lengthy development of the approach and the finite-difference equations used are detailed in

Appendix A.
The free-surface momentum equation (12) is cast in the trapezoidal form directly

up
� �t1

g
þ Dt

2
f � up

� �t1
g
¼ up
� �t0

g
� Dt

2
f � up

� �t0
g
� gDt

2q0

qp

� �t0
g

ogp
ox

� �
t0

�
þ qp

� �t1
g

ogp
ox

� �
t1
�
þ DtF ðugÞ;

ð21Þ

where up ¼ ðup; vpÞ. In (21) the free surface height, gt1p ¼ zt1p ðn ¼ 1Þ, at t1 is obtained from the particle dis-

placement calculation and is thus known, while ðqpÞ
t1
g is known from the density given by (20). For the

numerical calculation in this paper, the dissipation term F ðugÞ uses the operator

F ¼ mx
o2

ox2
þ mz

o2

oz2
ð22Þ

same also for vorticity and density diffusion in (14) and (20), where mx and mz are the numerical horizontal

and vertical diffusivities/viscosities, respectively; the viscosity and diffusivity values are assumed to be the

same in this paper. F ðugÞ is evaluated explicitly at the free surface. Thus, all the terms on the right-hand side

of (21) are now known, and ðupÞt1g is determined. For vorticity and density diffusion, the horizontal part of

the operator (22) is calculated explicitly at t0, while the vertical part is usually solved implicitly at t1 on the
fixed grid after the interpolation from the moving grid.

The particle’s position ðxt1p ; zt1p Þ at which the Lagrangian solutions of qt1
p , s

t1
p , and ðupÞt1g are obtained can be

calculated to Dt2 accuracy if the particle acceleration is known. Except at the free surface where the surface

height gradient at t0 can be used in the surface momentum equation (12) to obtain surface particle accel-

eration, the acceleration in general is not calculated in the present vorticity formulation. In order to obtain

the particle’s position to second order accuracy, without reference to acceleration, the following scheme is

used. Basically, it resorts to the approximation that

ou

oz

� �t1

p

� s0t1p � ow
ox

� �t0

p

; ð23Þ

where the vorticity components, sx and sy , in s0t1p are estimated from (14) with a simple forward Euler time

step. Thus, the mean shear is

ou

oz
¼ 1

2

ou

oz

� �t0

p

"
þ ou

oz

� �t1

p

#
: ð24Þ

Then for the Dt step, the average horizontal and vertical velocities are approximately

�uðzÞ ¼ �ug �
Z g

z

ou

oz
dz0 and �wðzÞ ¼ �

Z z

�h

o�u
ox

dz0; ð25Þ

where �ug ¼ ð1=2Þ½ðupÞt1g þ ðupÞt0g �, and ðupÞt1g is given by (21). Note that (21) at the free surface can be
evaluated independent of the motion elsewhere because, as already noted, the surface height gradient at t1
in (21) can be computed from the free surface particle displacement. Since (25) is accurate at least to the

order of Dt, the particle displacement below the free surface given by ðx; zÞt1p ¼ ðx; zÞt0p þ ð�u; �wÞDt is second
order accurate. This approach works well as long as o�u=oz is the dominant term in s0. But, if more accuracy

is needed, then the particle acceleration has to be computed, which means that the pressure P in the
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momentum equation (2) has to be known a priori. We describe in Section 3.5 how P may be obtained within

the present vorticity formulation.

3.3. The split-mode time integration

Because it is impractical to carry out the entire computation in the small time steps that are needed to

resolve surface gravity waves, it is assumed that the slower varying s and q fields are approximately con-

stant over the small Ds steps over which surface u and g are integrated. Thus, only the surface u and g are

integrated in small steps Ds ¼ Dt=n from t0 to t1 ¼ t0 þ Dt, where the integer n � 1, while s and q are

updated in one large Dt step from t0 to t1. This is essentially the split-mode computation strategy that has

been discussed in the literature [15,16]. This approach, however, tends to excite short scale (	 h or less)
surface waves, which must be filtered out periodically if the grid spacing is less than h. The alternative is to
solve the surface motion implicitly without regard to the high frequency surface gravity waves. This has also

been discussed in the literature, e.g. [4]. A possible implicit scheme for use with the semi-Lagrangian cal-

culation is indicated in Appendix B.

The small time-step integration of the surface motion is treated in a Lagrangian fashion; that is the

surface particles are displaced continuously in time for n � Ds steps. Only at the end of the multi-steps,

n � Ds ¼ Dt is the interpolation of surface velocity and g carried out, along with the interpolation of s and q.
The multi-step surface time integration uses a Runge–Kutta scheme.

3.4. Interpolation back to the fixed grid

The interpolation of g, st1p , ðupÞ
t1
g and qt1

p from the moving grid to the fixed grid is done sequentially along

each spatial dimension similar to the so-called cascade method [17]. The finite-difference interpolation

weights are generated using Fornberg’s algorithm [18]. This efficient and flexible algorithm is also used to

generate the weights for differencing the spatial derivatives. The interpolation and spatial differentiation are

typically obtained with fifth and sixth order accuracy, respectively.

3.5. The (u, w) solution and pressure

Let the flow variables on the fixed grid after the interpolation be labeled by the subscript r. The inter-

polated vorticity on the fixed grid is thus st1r , with which, s0t1r ¼ ðsy ;�sxÞt1r can be formed and used in the

elliptic equation (7) to obtain wt1
r . To solve the elliptic equation, four boundary conditions are needed: at

the surface z ¼ g, the boundary condition can be obtained from ðurÞt1g using the continuity equation

owr

oz

� �t1

g

¼ � o

ox
urð Þt1g : ð26Þ

The boundary condition at the impermeable bottom, z ¼ �h, is

wrð Þt1�h ¼ � urð Þt1�h

oh
ox

; ð27Þ

where ðurÞt1�h is set equal to �uðz ¼ �hÞ from (25). In the case of a no-slip bottom, the boundary condition
reduces to

wrð Þt1�h ¼ 0: ð28Þ

The two side-wall boundary conditions for w depend on the problem under consideration and may be

Neumann- or Dirichlet-type, e.g., ow=ox ¼ 0 at a free-slip vertical sidewall, or w ¼ 0 at a no-slip sidewall.
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With the boundary conditions specified as above, the elliptic equation (7) can be inverted for wt1
r on the

regularly spaced fixed grid rij,. For irregular domain geometry, we use the second order finite-difference

MUD2CR routine in the MUDPACK library available from NCAR [19] to solve (7). In some of our
calculations where the computation domain is essentially rectangular, the Fourier/Chebyshev transform

method is also used.

Once wt1
r is determined from (7) on the fixed grid, ut1r is readily obtained from (5) by integrating

downward from the surface with ðurÞt1g as the boundary condition. We use the cosine grid and the

Chebyshev polynomials for the vertical integration of (5) and (25) as well as for the implicit solution of

vertical dissipation/diffusion terms.

When the weakly non-hydrostatic approximation is applicable, (15) is inverted for flow velocity rather

than (7). Here the inversion is done on the fixed grid rij using second order finite-differences for the de-
rivatives. The horizontal x-component velocity ut1r is obtained from (16) using the solution of (15), while the

y-component vt1r is obtained simply by vertically integrating (5) since ow=oy ¼ 0 in the two-dimensional

case. The vertical velocity wt1
r is then obtained by integrating (17); for this vertical integration, the cosine

grid and the method of Chebyshev polynomials are used as well.

At this stage, the calculation of one time step is essentially complete, and the next new Lagrangian step

may begin from a new set of particles on the fixed grid. In this semi-Lagrangian solution procedure the

pressure P is not computed since it is not needed. Nevertheless, P is derivable from the solution of

the velocity field, and can be used, if necessary, to calculate the particle acceleration needed to improve the
particle’s displacement calculation, as noted in Section 3.2. To obtain P , the w momentum equation may be

discretized in the trapezoidal form

wt1
p ¼ wt0

p þ Dt
2q0

oP
oz

� �t0

p

"
þ oP

oz

� �t1

p

#
� gDt

2q0

qt0
p

�
þ qt1

p

�
þ DtF ðwÞ: ð29Þ

In this equation, the vertical velocity and density are known at both t1 and t0, the pressure gradient is
known at t0, and the dissipation term can be evaluated with the calculated w velocity. Thus, (29) can be

solved for ðoP=ozÞt1p . The P is then obtained by interpolating ðoP=ozÞt1p to the fixed grid rij and integrating

vertically, with the surface atmospheric pressure as the boundary condition.
4. Validation tests

To test the numerical model, three exact nonlinear solutions of the DJL equation are used as bench-
marks. They are finite-amplitude periodic internal gravity waves, internal solitary waves, and stratified flow

over a ridge. The DJL equation describes the motion of a finite-amplitude density perturbation propagating

at a constant speed or a stationary disturbance in a steady stream. A useful reference on this equation’s

derivation, generalization, and applications can be found in [12]. Also a recent alternative variational

approach is given in [20]. For the purpose here, the equation is of the form

o2/
ox2

�
þ o2/

oz2

�
þ 1

q
dqðwÞ
dw

1

2

o/
ox

� �2
"(

þ o/
oz

� �2

þ 2c
o/
oz

#
� g/

c

)
¼ 0; ð30Þ

where w and / are the streamfunctions in the moving and stationary frames of reference, respectively, and

are related by c, the disturbance’s propagation speed, as w ¼ /þ cz; the horizontal velocity in the sta-

tionary frame is thus u ¼ o/=oz ¼ ow=oz� c, and the vertical velocity w ¼ �o/=ox ¼ �ow=ox.
It is possible to write qðwÞ ¼ q0½1� rBðwÞ�, where r ¼ Dq=q0 is the total density difference between the

top and bottom boundaries normalized by the constant reference density q0. To be consistent with the
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Boussinesq approximation of the density effect in the momentum equations, it is assumed that r � 1 so

that all terms of r2 and higher in (30) can be omitted. The DJL equation then reduces to

l2 o
2/
ox2

�
þ o2/

oz2

�
þ 1

ĉ2
oBð/þ zÞ
oð/þ zÞ / ¼ 0: ð31Þ

The above reduced DJL equation has now been cast in the standard non-dimensional form [21], where

/ and w have been scaled by c � h; x by k�1 ¼ L=2p, and z by h, and the dimensionless phase speed is

ĉ ¼ c=
ffiffiffiffiffiffiffiffi
rgh

p
. All comparisons with the solutions of the DJL equation (31) in this section are presented

in terms of dimensionless variables as defined above (n.b. all variables are dimensionless in this section

only). The parameter l appears in (31) as part of scaling but plays no role in the determination of /
here.

The known solutions of this equation typically have been obtained assuming a fluid domain bounded

by a flat rigid upper surface. In the free surface model nearly the same rigid/flat surface effect can be

achieved by using a large gravitational constant. The simulation results to be shown here for the vali-

dation of the free surface model all have been obtained using gP 980 m/s2, specifically, in the time

integration of (21).
4.1. Periodic internal gravity waves

For a linear density stratification, oB=ow ¼ 1, and (31) has the first mode internal gravity wave solution

/ ¼ A cosðx� ĉtÞ sinðpzÞ for 0 ¼ z ¼ 1 ð32Þ

and

ĉ ¼ ðl2 þ p2Þ�1=2
: ð33Þ

The horizontal and vertical velocities given by (32) are

u ¼ pA cosðx� ĉtÞ cosðpzÞ; ð34aÞ
w ¼ A sinðx� ĉtÞ sinðpzÞ: ð34bÞ

Density perturbation consistent with this propagating wave is

q0 ¼ A
ĉ
cosðx� ĉtÞ sinðpzÞ ð35aÞ

and the total density is

q ¼ 1� zþ q0: ð35bÞ

Here the dimensionless variables u, w, q, q0, and t have been scaled as follows: u by c, w by lc, with
c ¼ ĉ

ffiffiffiffiffiffiffiffi
rgh

p
, q and q0 by Dq, the total density difference, and t by ðl

ffiffiffiffiffiffiffiffiffiffi
rg=h

p
Þ�1

.

The free surface model is initialized at t ¼ 0 using the above u, w and q0. Two examples of initial flow

fields / and q are shown in Figs. 1(a) and (b) corresponding to amplitudes u0 ¼ pA < 1 and u0 > 1, re-

spectively. In the case of u0 > 1, recirculation zones appear in the density field as a consequence of the local

wave particle speed exceeding the wave phase speed, recalling that u has been scaled by c.
The periodic internal waves are simulated for three different amplitudes, u0 ¼ 0:16, 0.32, and 1.6 and for

a range of l between 0.1 and 5. The simulations were performed alternately using the weakly and then the



Fig. 1. Periodic internal gravity wave case. (a) Small amplitude wave example, u0 (¼ particle speed normalized by phase speed) <1;

density contours (solid); streamlines (grey solid – positive; dashed – negative). (b) Large amplitude wave example, u0 > 1. (c) Com-

parison of theoretical phase speeds (solid curve) and simulated wave phase speeds (symbols). The simulation results at each l are

obtained from runs with and without viscosity/diffusivity and for three different amplitudes u0 ¼ 0:16, 0.32, and 1.6. The results are all

plotted but are indistinguishable as they overlap. (d) Energy decay versus time. Predicted (lines) and simulated (symbols). Only the

weakly non-hydrostatic simulation results are shown.
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fully non-hydrostatic equations. For the weakly non-hydrostatic calculation, the resolution is limited to Dx
not less than one, which corresponds to dimensionally a grid spacing not less than the local depth, h. The
surface time step Ds is 	 a tenth of Dx=

ffiffiffiffiffi
gh

p
while Dt 	 100Ds. A range of dimensionless viscosity/diffusivity

values are considered, 06 mx 6 0:224 and 06 mz 6 0:0393.
The phase speed ĉ as a function of l calculated from the simulated internal wave field is shown in

Fig. 1(c), where the theoretical speed (solid curve) given by (33) is also plotted. For small l, i.e., wavelength
greater than water depth, the weakly non-hydrostatic equations are applicable. In the range of l < 1, all

simulations with and without dissipation using weakly non-hydrostatic approximation obtain phase speeds

that agree with the theoretical result, and this is so despite the fact that the approximation is valid strictly

for l � 1. No result is shown beyond l ¼ 1 as this approaches the resolution limit of the grid spacing,

which is to be not less than h as noted above. The fully non-hydrostatic simulations obtain phase speeds

that agree with the theory over a broader range, to l ¼ 5, where the ratio of the actual wavelength to the
water depth is close to one. For ratios greater than this, the approximation, (23)–(25), for the displacement

calculation is inapplicable, as ow=ox now can be as large as ou=oz, and no additional result is obtained.

Fig. 1(d) compares the simulation time series for the wave energy to the theoretical prediction. In the

presence of dissipation and diffusion, the theoretical wave energy should decay as exp½�2ðmx þ p2mzÞt�. The
total wave energy, kinetic plus potential, per unit volume in terms of the dimensionless variables (34) and

(35) is
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E ¼ 1

2
u2

 
þ l2w2 þ q0

ĉ

� �2
!
: ð36Þ

Fig. 1(d) shows that the total energy Ê, summing E over the volume, decays with time at a rate consistent

with that given by the theory (straight lines). The results are shown for l ¼ 0:5 to test the weakly non-

hydrostatic calculation and for three different pairs of mx and mz.
4.2. Internal solitary waves

Fully nonlinear, finite-amplitude internal solitary gravity wave solutions can be obtained from (31) by

requiring / to vanish as x ! 
1. Such finite-amplitude solutions, however, have to be determined gen-
erally by numerical means, as (31) is a nonlinear eigenvalue problem with the eigenvalue, the inverse of the

squared phase speed ĉ, to be determined with the unknown /. The numerical solution of the solitary wave

problem has been investigated by several researchers [20–22]. Here, for testing the free-surface non-hy-

drostatic model, we will use the solitary wave solutions given in [20] that apply to the density profile, qðwÞ ¼
q0½1� r tanhðbwÞ�, where 06w6 1, and 1=b times h is the half width of the tanh function; thus in (31),

BðwÞ ¼ tanhðbwÞ. Moreover, since there is no fixed horizontal scale for the solitary wave, h is used for 1=k
with l ¼ 1 in (31).

Shown in Fig. 2(a) is the solution for b ¼ 1 and ĉ ¼ 0:294. For this stratification, the far field density
varies almost linearly with respect to z. The solitary wave appears as a single wave of elevation with the lines

of constant density (isopycnals) displaced upward. (A mirror image of a solitary wave of depression exists

for �16w6 0.) Shown in Fig. 2(b) is the solution for the same stratification but for a larger wave am-

plitude, and ĉ ¼ 0:302. This case has a maximum fluid particle speed comparable to the wave’s phase speed

near the bottom boundary. Figs. 2(c) and (d) show the solitary wave solutions for b ¼ 4. The density

stratification is now mostly limited to the lower half of the domain. The largest amplitude solitary wave,

ĉ ¼ 0:431, Fig. 2(d), contains a recirculation core, in which the particle speed exceeds the phase speed. The

solitary waves in all four plots are displayed with the same vertical-to-horizontal ratio of 1:20 to contrast
the difference in their sizes. The horizontal extent of the contour lines marks the actual extent of the

computational domain. The DJL solutions in Figs. 2(a)–(c) are used as the benchmarks for testing the

weakly non-hydrostatic calculations. The larger amplitude wave in Fig. 2(b) presents a more challenging

test as the scale of flow variation is close to the limit of the weakly non-hydrostatic approximation. The

largest amplitude case with a recirculation core in Fig. 2(d) is fully non-hydrostatic and is used to test the

fully non-hydrostatic calculation.

The simulated solitary waves initialized with the density and velocity of the DJL solitary waves in Figs.

2(a)–(d) are shown in corresponding Figs. 2(e)–(h). A periodic horizontal boundary condition is used in all
the calculations. The solitary waves shown have been integrated for approximately 10 buoyancy periods,

during which time, these solitary waves have traveled through the box at least once; for plotting, they have

been repositioned to near the center of the domain so that they are easily compared with the DJL solutions

in Figs. 2(a)–(d). A slight viscosity/diffusivity has been used in the two large amplitude cases to maintain

numerical stability, mx ¼ 2:2� 10�5 and mz ¼ 2:0� 10�6 for the case in Fig. 2(f) and mx ¼ 2:9� 10�4 and

mz ¼ 2:9� 10�5 for the case in Fig. 2(h). The two weak amplitude cases tend to be numerically stable even

without viscosity; nevertheless these two cases have also been run with small viscosity/diffusivity similar to

the values above.
The simulated solitary waves in Figs. 2(e)–(g) using the weakly non-hydrostatic equations are in good

agreement with the benchmark solitary wave solutions in Figs. 2(a)–(c), except for minor disturbance away

from the solitary waves. The weak disturbance appears to be on both sides of the solitary waves because of

the periodic boundary condition. The horizontal resolution is limited to Dx=hP 1. In the vertical direction



Fig. 2. Internal solitary waves. Streamline contours – dashed; density contours – solid. (a)–(d) JDL solutions. (e)–(g) Simulations. The

solitary wave, propagating from right to left, has been repositioned to the center of each plot for ease of comparison. The simulation

results are all shown at the time of 	10 buoyancy periods. All plots have the same 1:20 aspect ratio. The actual computation domain is

given by the horizontal extent of the contour lines.
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the motion is resolved with a 33-point cosine grid. The finite-difference interpolation is used for the small

amplitude cases in Fig. 2(e) and (g). A spectrally accurate interpolation is used for the higher amplitude case

in Fig. 2(f). The more accurate spectral interpolation is necessary to compensate for the limited resolution

Dx 	 h which marginally resolves the solitary wave. The largest amplitude case, Fig. 2(h), which is simu-

lated using the fully non-hydrostatic equations, is resolved with 65 vertical grid points and 160 horizontal

grid points and interpolated using finite-difference; but the inversion of the elliptic equation (7) is done

spectrally. Again the comparison with the benchmark case, Fig. 2(d), is favorable.
In Figs. 3(a) and (b) the horizontal position of the simulated solitary wave, defined by the position of the

amplitude maximum, is plotted as a function of time for the four cases, as well as the predictions (straight

lines) given by the benchmark solutions. For this plot, x0 ¼ c0t0, where x0 ¼ xb, t0 ¼ t
ffiffiffi
b

p
and c0 ¼ ĉ

ffiffiffi
b

p
; the



Fig. 3. Comparison of the predicted (line) and simulated (symbols) solitary wave positions x0 as a function of time t0 and the similarity,

as measured by the correlation coefficient R, between the simulated wave and the DJL solution. t0 has the unit of buoyancy periods, and
x0 is given in the unit of the density-interface thickness. The symbols correspond to the cases in Fig. 2 as follows: (a) }, Fig. 2(g); +, Fig.

2(e), and � same but without viscosity. (b) �, Fig. 2(h); }, Fig. 2(f), and + same but without viscosity.
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addition of the multiplicative factor b accounts for the fact that the relevant height scale for the solitary

wave is the stratification scale h=b. Above the x0 vs. t0 plot is the correlation coefficient, R, which measures

the degree of similarity between the simulated and benchmark DJL solitary wave streamfunctions, plotted

as a function of time. In Fig. 3(a), the line of larger slope is the predicted x0 vs. t0 for the solitary wave case in
Fig. 2(c), and the symbols are the locations from the numerical simulation. This simulation is inviscid and

weakly non-hydrostatic, and the predicted and simulated positions are seen in agreement over the 50

buoyancy periods plotted. The shape of the simulated wave also agrees closely with the DJL solution as

indicated by R > 0:9 over the same time period. The line of smaller slope in Fig. 3(a) is the prediction for
the weakly non-hydrostatic case in Fig. 2(e), and again there is an agreement between the simulated and

predicted positions. Two simulation results are shown in this comparison, one with and one without vis-

cosity/diffusivity. Although both compare well with the prediction, the one with viscosity performs slightly
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poorer with R decreasing to 0.94. In Fig. 3(b), the larger slope line is the prediction for the fully non-

hydrostatic case in Fig. 2(h), and the simulated wave positions follow this line closely. The correlation plot

indicates a good agreement between the simulated solitary wave and the DJL solution; nevertheless, the
correlation decreases slowly with time to 	0.95 at t0 ¼ 50 buoyancy periods. The smaller slope line in

Fig. 3(b) is the prediction for the weakly non-hydrostatic case in Fig. 2(b), and the simulation results for the

wave positions shown are obtained with and without viscosity/diffusivity. The inviscid result terminates at

around t0 ¼ 25, at which point the run has become noise, and this is evident in the loss of the correlation in

the R vs. t0 plot. The viscous result continues for a longer time. But it can be seen that the simulated wave

position departs gradually from the prediction with increasing t0, and the correlation becomes poor. For

this weakly non-hydrostatic case, the resolution of the solitary wave is only marginal as noted earlier in this

section.

4.3. Density-stratified flow over a ridge

Solutions of stratified flow over a barrier can be determined from the DJL equation in a number of ways

[12,23]. Here, we will use a simple approach, by exploiting the fact that streamlines and isopycnals are

coincident in the moving frame of reference of a solitary wave. In this reference frame, a uniform current

now appears in the far field, moving at a constant speed c, and the solitary wave is a local disturbance to

this current. Since the streamlines and isopycnals are now coincident, they must be disturbed in the same
manner across the solitary wave. In the case of a solitary wave of elevation considered in Section 4.2, the

disturbance appears as an upward deflection or a hump for the isopycnals, and this is now true as well for

the streamlines. By picking one such deflected streamline or isopycnal and treating it as a solid surface, a

solution for a flow over a ridge is then obtained. The Froude number for such a flow is necessarily su-

percritical.

Fig. 4(a) shows the streamlines of a flow over a ridge obtained using the above procedure. The ridge has

a maximum slope of 0.04, and the domain’s aspect ratio h=L ¼ 1=60. Superimposed in the same figure are

the streamlines of simulated flow obtained using the weakly non-hydrostatic equations without viscosity/
diffusivity. The simulated flow is shown at 50 buoyancy periods after the start. As is evident, the simulated

and the theoretical streamlines are indistinguishable, confirming the validity of (15) and (16) for variable h.
Fig. 4(b) shows the simulated streamlines from the inviscid fully non-hydrostatic calculation and the su-

perimposed theoretical streamlines. Again the simulated and the theoretical streamlines are indistin-

guishable. In Fig. 4(c), the flow over a steeper ridge with a slope of 0.244 is shown. The theoretical

streamlines are the dashed curves and the simulated streamlines are solid. The simulation is fully non-

hydrostatic, and to maintain numerical stability, a horizontal viscosity/diffusivity of mx ¼ 2:25� 10�3 is

used, and mz ¼ 0. This dissipation accounts for the small reduction of the transport after 	50 buoyancy
periods, the time at which the plot is shown; the reduction is indicated by the solid curves being slightly

higher than the dashed curves; the contour interval is the same for both the theoretical and the simulated

streamfunctions.
5. Simulation of the tidal generation of internal solitary waves

One possible application of the present free-surface non-hydrostatic model is the simulation of coastal
internal solitary waves. These waves are prominent features on the continental shelf and are detected

frequently in spaceborne radar images of the sea surface; some examples can be found in [24–27]. Their

origin can be usually traced to the ocean tides at the continental shelf-break. The rapid depth change across

this region causes tidal currents to contract and expand, producing large thermocline oscillations that

propagate onshore as solitary wave trains.



Fig. 4. Flow over a ridge. Simulated streamlines – solid; theoretical streamlines – dashed. The current flows from left to right. The far-

field density as a function of z is shown with the line profile on the right-hand side; the horizontal density axis is equivalent to the

parameter r ¼ Dq=q0 with r¼ 10�4/tick mark. The contour plots are shown with a common aspect ratio of 1:60 and at a time of 	50

buoyancy periods. (a) and (b) The maximum ridge slope is 0.04. (c) The maximum ridge slope is 0.24. The horizontal extent of the

simulation domain corresponds to that of the streamlines.
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There have been a number of numerical simulation studies of internal solitary waves [28–32]. Here the

canonical problem of tidal generation of internal solitary waves at the shelf-break will be considered to

demonstrate the applicability of the present free-surface hydrodynamic model, in particular, its applica-

bility with respect to the weakly non-hydrostatic approximation. It may be noted that the present model

with the weakly non-hydrostatic approximation takes into account the full range of physics, namely, free
surface tides, continuous density stratification, Coriolis force, variable bathymetry, and dissipation, which

is only partially considered in the literature cited above.

For this canonical problem, the shelf-break topography may be idealized as a tanh function. The mean

density stratification may be assumed horizontally uniform, and the tides may be represented by an os-

cillating free surface at the open boundary. The specific functional form chosen for the bottom topography

is h ¼ �75 m)25 m � tanh [(x� 50 km)/1.25 km] for 06 x6 100 km. The mean density stratification, with

Dq ¼ 4:5 kg/m3 over 25 m, is approximately that observed at the Mid Atlantic Bight in a field experiment

[26], where solitary wave trains have been detected. The tidal forcing is represented as g ¼ 2
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m � sin(2p � t=12:4 h) at the open boundary. The other parameter values chosen are: g ¼ 9:8 m/s2,

f ¼ 1:03� 10�4/s approximately at mid latitudes, 0:546 mx 6 2:17 m2/s in the interior, 8:686 mx 6 17:36 m2/s

near the lateral boundaries to reduce wave reflection, and 1:12� 10�4
6 mz 6 2:0� 10�4 m2/s.

The model domain is closed on the coastal side, x ¼ 0, by a vertical wall, where the boundary conditions

are u ¼ 0, ov=ox ¼ 0, ow=ox ¼ 0, and og=ox ¼ 0. The boundary conditions on the open ocean side, x ¼ 100

km, are, in addition to the tidal forcing given above, ov=ox ¼ 0 and ow=ox ¼ 0, but no condition imposed

on u. The vertical boundary conditions are ou=oz ¼ 0, ov=oz ¼ 0, and oq=oz ¼ 0 at the surface and bottom.

The inversion of the weakly non-hydrostatic equation (15) uses the boundary conditions o~u=ox at x ¼ 100

km and ~u ¼ 0 at x ¼ 0 km. Because the total water depth Hg ¼ hþ g in (15) now changes with time, the

finite-difference matrix representation of (15) has to be updated periodically. For the low frequency tide

considered here, an update every 100Dt steps is performed.
The results of three numerical simulations with increasing horizontal resolution, Dx=hmax ¼

2;Dx=hmax ¼ 1 and Dx=hmax ¼ 0:5, are shown in Figs. 5(a)–(c), respectively. The vertical grid for all three

has cosine spacing with 33 grid points. The first two are weakly non-hydrostatic simulations, and the third

and highest resolution one is fully non-hydrostatic. All three simulations begin from the same initial state of
Fig. 5. Simulation of internal solitary wave trains generated at the shelf-break by the tide. The tidal forcing is applied at the right

boundary. The shelf-break has a maximum slope of 0.02. The maximum depth, maxðhÞ, is 100 m. The results are shown at 23 h or 1.85

tidal cycles. (a) and (b) Horizontal resolution Dx ¼ 200 and 100 m, respectively. These two lower resolution weakly non-hydrostatic

simulations are comparable to (c), the higher resolution fully non-hydrostatic simulation with Dx ¼ 100 m.
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rest with tidal forcing at the boundary. At the time shown, multiple bore-like solitary waves have been

generated and propagate in opposite directions away from the shelf-break. These solitary waves are waves

of depression. Their generation and evolution are consistent with the previously published studies [29,32],
to which the reader may refer for more details concerning the underlying physics; the previous studies,

however, use rigid lid domains in which tidal-like currents have to be prescribed as a background flow over

the whole domain. The comparison in Fig. 5 shows that the lower resolution weakly non-hydrostatic model

is able to capture the field of solitary wave trains as well as the high resolution non-hydrostatic model albeit

with less detail.

All three simulations have been carried out with uniform Dx. In the case of weakly non-hydrostatic

simulation, because Dx can be smaller for smaller h, it is possible to use a higher resolution grid on the shelf

and a lower resolution one off the shelf. The present semi-Lagrangian scheme with the flexible Fornberg’s
algorithm for generating interpolation/finite-difference weights is readily adaptable to a variable grid sys-

tem. We have confirmed the variable grid computation separately, and expect it to be useful for addressing

coastal problems. It is of interest to note that the present model formulation also lends itself readily to the

embedding of a high resolution non-hydrostatic computational domain within a larger scale, lower reso-

lution, weakly non-hydrostatic computational domain, because a consistent framework has been used here

to formulate the model’s weakly and the fully non-hydrostatic equations. Specifically, the time-dependent

governing equations (3), (4) and (8) are the same for both the weakly (large-scale) and fully (small-scale)

non-hydrostatic domains. Thus, the time integration may proceed in the same way for both domains, while
at each time step the 2D and 3D elliptic equations are solved in the respective weakly and fully non-hy-

drostatic domains, with the boundary conditions for the embedded fully non-hydrostatic domain given by

the solution of the large-scale weakly non-hydrostatic domain. This embedding capability means that in

regions such as across an internal wave train where high resolution is needed, the more demanding, fully

non-hydrostatic computation can be used while the more efficient weakly non-hydrostatic computation can

be carried out over a broader area. This potential application, however, is yet to be investigate; in fact, there

also exists the potential of adding the third, shelf-wide, hydrostatic domain, within which to embed the

weakly and fully non-hydrostatic domains. The hydrostatic model, useful for shelf-wide coastal ocean
circulation modeling [16], is already contained in the present formulation as noted earlier in Section 2. In

such a triply nested domain, current/wave motions from shelf-scales to intermediate and fine-scales may be

modeled simultaneously.
6. Summary

An alternative formulation of the free surface hydrodynamic model has been presented based on the
horizontal vorticity and surface momentum equations. This formulation provides a framework for ap-

plying the weakly non-hydrostatic approximation to situations where the horizontal scale of the density-

stratified wave/current motion exceeds the local water depth. The approximation eliminates the vertical

dimension of the elliptic equation that is normally required for the fully non-hydrostatic calculation. This

enables a more efficient computation where fully non-hydrostatic physics is not needed.

A semi-Lagrangian scheme is used for the numerical integration of the hydrodynamic model. The La-

grangian time integration is carried out explicitly in the split-mode fashion, where the particle motion

associated with the fast surface gravity wave mode is integrated in small Ds steps, while the motion of the
slower evolving internal wave mode is integrated in larger Dt steps with Dt � Ds. Alternatively, the surface

mode can be integrated implicitly in large Dt steps when surface wave motion is of minor importance, and

this is indicated in Appendix B. After a Lagrangian time step, the efficient sequential one-dimensional

method is used to interpolate the flow field back to a reference fixed grid. A relatively simple approach

based on the time rate of change of velocity shear is used to provide the particle displacement calculation
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accurate to the second order in time. This is, however, limited to flow having horizontal vorticity char-

acterized by vertical u-shear greater than horizontal w-shear. To calculate the displacement field without

this limitation and with greater accuracy requires additional calculation of the pressure and the acceleration
field. The present solution procedure clearly needs to be improved in this direction.

The hydrodynamic model is validated using the nonlinear non-hydrostatic solutions given by the DJL

equation for periodic internal gravity waves, internal solitary waves, and density-stratified flow over a ridge.

These non-hydrostatic motions are simulated using the model with and without the weakly non-hydrostatic

approximation. It is shown that the weakly non-hydrostatic approximation has a broader range of ap-

plicability, up to l ¼ 1, than that expected, l � 1. The simulated non-hydrostatic wave/current fields agree

well with the benchmark solutions. The phase speeds of simulated waves are in generally good agreement

with the expected, and the flow over a ridge matches closely the expected flow. It should be noted that in
these simulations the surface velocity is calculated as part of the time integration, not prescribed as a

boundary condition from the known benchmark solutions, and thus, the tests here also validate the free

surface calculation. Finally, a numerical simulation of tidal generation of internal solitary waves at the

shelf-break has been demonstrated. It is shown that the more efficient weakly non-hydrostatic computation

can capture the generation and propagation of the solitary wave trains as well as the fully non-hydrostatic

computation. This result indicates that over the wide extent of coastal ocean domain, the weakly non-

hydrostatic computation can be more economically utilized, while the fully non-hydrostatic computation

may be embedded in a sub-region of the domain where higher resolution is needed. In modeling still larger
coastal area, it is suggested that the non-hydrostatic computation may be further embedded within a larger-

scale hydrostatic computation which the present model can also provide.
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Appendix A

The actual ðsxÞt1p and ðsyÞt1p equations used for the numerical time integration are obtained in the two-

dimensional ðx; zÞ domain as follows.

From (2), the Lagrangian momentum equations discretized in time in the trapezoidal form are

ut1p � ut0p ¼ f
vt1p
�

þ vt0p
�
� 1 oP t1

p

�
þ
oP t0

p

�
; ðA:1Þ
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Decoupling ut1p and vt1p from (A.1) and (A.2) by cross elimination, one obtains

ut1p ¼ a1ut0p þ a2vt0p � a3
q0

oP
ox

� �t1

p

"
þ oP

ox

� �t0

p

#
; ðA:4Þ
vt1p ¼ a1vt0p � a2ut0p þ a4
q0

oP
ox

� �t1

p

"
þ oP

ox

� �t0

p

#
; ðA:5Þ

where

a1 ¼
1� ~f 2

1þ ~f 2
; a2 ¼

2~f

1þ ~f 2
; a3 ¼

Dt

2ð1þ ~f 2Þ
; a4 ¼ ~f a3 and ~f ¼ f Dt

2
:

With ow=oy ¼ 0, ðsxÞt1p obtained through differentiating (A.5) with respect to z is

ðsxÞt1p ¼ �
ovt1p
oz

¼ �a1
ovt0p
oz

þ a2
out0p
oz

� a4
q0

o

oz
oP
ox

� �t1

p

"
þ oP

ox

� �t0

p

#
: ðA:6Þ

Here all the flow variables are Lagrangian variables and are functions of the Lagrangian coordinates ða; cÞ,
and the differentiation with respect to z on the right-hand side of (A.6) obeys the chain rule,

o=oz ¼ ðoa=ozÞðo=oaÞ þ ðoc=ozÞðo=ocÞ. The other vorticity component, ðsyÞt1p ¼ ðout1p =ozÞ � ðowt1
p =oxÞ, ob-

tained from cross differentiating (A.3) and (A.4) and with the chain rule enforced similarly, is

ðsyÞt1p ¼ a1
out0p
oz

�
owt0

p

ox
þ a2

ovt0p
oz

þ gDt
2q0

oqt1
p

ox

�
þ
oqt0

p

ox

�
� a3
q0

o

oz
oP
ox

� �t1

p

"
þ o

oz
oP
ox

� �t0

p

#

þ Dt
2q0

o

ox
oP
oz

� �t1

p

"
þ o

ox
oP
oz

� �t0

p

#
: ðA:7Þ

For f ¼ 0 used in the validation tests and f 	 10�4 s�1 and Dt 	 O (5 min) or less used in the simulation of

tidal internal waves, the parameter ~f � 1, and the coefficients in (A.6) and (A.7) are essentially the fol-

lowing: a1 ¼ 1, a2 ¼ fDt, a3 ¼ Dt=2, and a4 ¼ fDt2=4, to better than 0.1% accuracy. Comparison of these

coefficients shows that the pressure gradient terms in (A.6) are smaller than all the other terms by Dt.
Keeping only the larger terms, the sx equation is

ðsxÞt1p ¼ �
ovt0p
oz

þ fDt
out0p
oz

: ðA:8Þ

In (A.7), with a3 ¼ Dt=2 the two pressure gradient terms at t1 cancel out; but, the x and z derivatives for the
two remaining pressure gradient terms at t0 do not, because the x and z derivatives outside the parentheses
are evaluated with respect to the ða; cÞ coordinates; that is, the chain rule applies. However, at the zeroth
order, ða; cÞ ¼ ðx; zÞ, the two pressure gradient terms at t0 do negate each other. Only at the next order, does

a difference exist, since the relationship between ðx; zÞ and ða; cÞ at higher order is

ða; cÞ ¼ ðx; zÞ � ðut0p ;wt0
p ÞDt þOðDt2Þ: ðA:9Þ

Therefore, the difference,

� o

oz
oP
ox

� �t0

p

þ o

ox
oP
oz

� �t0

p

;
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between the two pressure gradient terms at t0 is at most on the order of Dt. This means that the pressure

gradient difference term is smaller than the other terms by Dt as the difference term is multiplied addi-

tionally by Dt in (A.7). Again retaining only the larger terms, (A.7) becomes

ðsyÞt1p ¼
out0p
oz

�
owt0

p

ox
þ fDt

ovt0p
oz

þ gDt
2q0

oqt1
p

ox

�
þ
oqt0

p

ox

�
: ðA:10Þ

The numerical time integration in this paper uses (A.8) and (A.10). These two equations can be shown

readily using (A.9) to reduce to (14) in the limit of Dt ! 0.
Appendix B

In problems where high frequency surface gravity waves are of no interest and are to be excluded from

the calculation, implicit time integration for the free surface height with large time steps can be adopted.

The difficulty with the implicit time integration of the free surface height in a non-hydrostatic density-

stratified system is that the subsurface velocity needed for the calculation cannot be determine a priori.
With the semi-Lagrangian scheme, the following procedure mitigates the difficulty and obtains the free

surface height implicitly.

The first step is to compute the particle displacement field. This step always generates noisy grid-scale

distortion of the free surface when the time step is greater than the periods of high frequency surface grid-

scale waves (noise). Nevertheless, this free surface distortion is not significant if at the start of the dis-

placement calculation, the surface noise is minimal. The second step is to compute the particle’s qt1
p from

(20) and then st1p from (A.8) and (A.10) and to estimate the particle’s wt1
p by either using wt1

p ¼
wt0

p þ ðdwt0
p =dtÞDt or some higher order schemes. At the same time, (21) can be rewritten as

up
� �t1

g
þ gDt

2q0

qp

ogp
ox

� �t1

¼ up
� �t0

g
� Dtf � up

� �t0
g
� gDt

2q0

qp

ogp
ox

� �t0

þ DtF ðugÞ ðB:1Þ

with the entire right-hand side of (B.1) evaluated at t0, where for simplicity the Coriolis term is now
evaluated explicitly. Let Gt1

p denote the right-hand side of (B.1). The third step is to interpolate the cal-

culated st1p , w
t1
p , and Gt1

p ¼ ðupÞt1g þ ðgDt=2q0Þðqpðogp=oxÞÞ
t1 back to the fixed grid, r ¼ ðx; zÞ to obtain st1r , w

t1
r ,

and Gt1
r on the fixed grid (note the change of subscript). With these fixed grid variables now known, out1r =oz

is determined from (5), and the velocity profile at t1 is

ut1r ðzÞ ¼ ðurÞt1g þ
Z
z

out1r
oz

dz: ðB:2Þ

Since Gt1
r ¼ ðurÞt1g þ ðgDt=2q0Þðqrðogr=oxÞÞ

t1 , (B.2) becomes

ut1r ðzÞ ¼ Gt1
r � gDt

2q0

qr

ogr
ox

� �t1

þ
Z
z

out1r
oz

dz: ðB:3Þ
The fourth step is to discretize (13) in time by the trapezoidal rule, i.e.,

gt1r � gt0r
Dt

¼ � 1

2

o

ox

Z g

�h
uðzÞ dz

� �t1

r



þ

Z g

�h
uðzÞ dz

� �t0

r

�
: ðB:4Þ
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Using (B.3) for ut1r ðzÞ and regrouping the terms, (B.4) becomes

gt1r � gDt2

4q0

o

ox

Z g

�h
qg

og
ox

dz
� �t1

r

¼ gt0r � Dt
2

o

ox

Z g

�h
ðG

�

þ DuÞ dz

�t1

r

þ
Z g

�h
udz

� �t0

r

�
; ðB:5Þ

which is a second order partial differential equation for the unknown gt1r . To be able to solve this equation

practicably, g in the integration limit for t1 will have to be assumed to be known approximately from the
displacement calculation in step one given above. In this case, (B.5) is a linear second order partial dif-

ferential equation,

gt1r � gDt2

4q0

o

ox
Hg qg

� �t1
r

ogt1r
ox

� �
¼ gt0r � Dt

2

o

ox

Z g

�h
ðG

�

þ DuÞ dz

�t1

r

þ
Z g

�h
u dz

� �t0

r

�
; ðB:6Þ

solvable by conventional procedures.

Once gt1r is determined, the remaining steps are to calculate ðugÞt1p using (21) and perform all the other

operations described in Sections 3.2, 3.4 and 3.5 to formally determine w and u, as well as P , at t ¼ t1.
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